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ABSTRACT: Earlier, while considering the requirements of general vascular plants, Silicon was not
acknowledged as something vital. But later, it was found that Silicon is greatly responsible to resist fungal as
well as bacterial diseases in plants. Also, it influences the growth and development of an extensive range of
plant species. Silicon is well-acknowledged for its nature of effective mitigation against numerous climatic
stresses. Silicon generally functions as an immune-modulator for influencing the possible measures of plant
defense responses in plants. Mainly, it will interact with the major components that are releasing stress
signals in plant system. Hence, Silicon will be ultimately responsible for the induced resistance. In this review,
we will be considering a comparative analysis of physical, chemical, molecular and cellular defense response
produced by Silicon in different crops. Another major summarization from this review will be regarding the
role of Silicon in plant-microbe interaction. But as there are no direct instances of silicon being responsible
for plant pathogenic functionary it could be questionable that how silicon is hindering the plant pathogenic
interactions. This article is attempting to answer such doubts by giving a brief comparison of silicon being
assessed in physical, chemical, molecular and cellular manner. The assessment is purely based on how
pathogens react to the silicon application on different levels of physiology. Consequently, this evaluation will
be helpful in ameliorating the plant resistance by certain modifications in Silica fertilizers input. Although
one major drawback can be convincing the farmers to swaping to a new type of fertilizer. This article
highlights the future aspect of research concerning the performance of Silicon in agriculture-farming.
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INTRODUCTION

Silicon is considered as the second most plentiful
element in the universe consisting 70 percent soil
abundance (Epstein, 1994; Savant et al., 1997; Ma and
Yamaji, 2006). New studies have shown Silicon as a
beneficial element, contradicting the previous reports
where its essentiality was considered minimum. Major
uptake of Silicon is done via root system and hence it
affects the accumulation rate of Silicon among different
plant species (Takahashi et al., 1990). Numerous
studies have found that it is not essential for silicon
mediated resistance to always locate in the root system
of the plant. By considering an example of Silicon
influencing resistance in tomato we can verify the
previous statement. In case of silicon influencing
resistance in tomato crop against pathogen Ralstonia
solanacearum, the resistance is detected in the shoot
complex. This could be because of certain alterations in
the pectic polysaccharide morphology of shoot plasma
membrane, hence restricts the bacterial fluctuations
towards stem (Diago and Wydra, 2007).
While contemplating the uptake of silicon via the roots,
appears as silicic acid that is hydrate of silica (Ma and
Yamaji,2006). The movement of this silicic acid occurs
through cytomembrane with the help of two carriers
namely Lsi1 and Lsi2. These two acts as influx and
efflux transporters respectively (Ma et al., 2006, 2008).

The captivated silicon is largely sedimented in the
plasma membrane and is highly necessitate with stress
linked signals (Fauteux et al., 2005).

After all things considered about stress linked
signals, one of the most important properties of Silicon
can be evaluated here. It improves the mechanically
operated and functional features of plants and works
well for controlling certain biotic as well as abiotic
stress conditions (Epstein, 1994; Richmond and
Sussman, 2003; Ma, 2004; Heine et al., 2007; Ma and
Yamaji, 2006). Abiotic stress could be any drought
situation, lodging, salinity stress, imbalance in
nutrients, toxicity due to some metal etc. (Epstein 1994
& 1999; Savant et al., 1997; Liu et al.,2014; Ma and
Yamaji, 2006; Coskun et al., 2016). Silicon enriches the
resistance towards diseases caused by bacteria, fungi as
well as pests (Fauteux et al., 2005; Marschner, 2012).
Theolder approaches used for pathogenic management
are becoming resistant with continuous application.
Ultimately, plant protection needs some changes and
advancements now. Silicon application can be a great
replacement as it is required and applied in minute
amount that will reduce the toxic pressure on
environment as well as soil.
Some studies have been attentive about the role of
silicon in the interaction of microbes with plant system.
This not only enhances host resistance but also
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stimulates the defense responses (Cai et al., 2008;
Ghareeb et al., 2011; Ye et al., 2013). Certain
experiments showed that Silicon shows more resistance
in particular crops e.g. rice and cucumber (Ma et al.,
2006). As we know that plant diseases are the ultimate

result of plant pathogen interaction and hereby
considering its the primary role of silicon, we will see
what type of resistance this silicon will show with
several plant diseases in different crops (Table 1).

Table 1: Silicon showing resistance mechanism with respect to different aspects (crop species and pathogen
invading).

Crop Disease Pathogen Resistance Mechanism Reference

Arabidopsis Powdery mildew Erysiphe cichoracearum,
Agrobacterium tumefaciens

Physical, Biochemical,
Molecular

Ghanmi et al., 2004; Fauteux et
al., 2006; Vivancos et al., 2015)

Banana Black sigatoka Mycosphaerella fijiensis Physical, Biochemical Kablan et al., 2012
Barley Powdery mildew Blumeria graminis Physical Wiese et al., 2005
Bean Angular leaf spot Pseudocercospora griseola Physical Rodrigues et al., 2010

Silicon initiates resistance by preventing the penetration
by various means-
1. Structural implementation (Epstein,1999, 2001;
Rodrigues et al., 2015).
2. Stimulation of systemically acquired resistance.
3. By producing anti-microbial compound (Fauteux et
al., 2005; Datnoff et al., 2007; Fortunato et al., 2012;
Van et al., 2013).
4. By activating numerous signaling pathways (Chen et
al., 2009, 2014; Vivancos et al., 2015).

A. Silicon-mediated resistance
1. Physical resistance: Every plant pathogen requires
to penetrate through wax layers, cuticles and cell walls
to cause infection successfully in any host plant
(Schmelzer,2002; Nawrath, 2006; Lazniewska et al.,
2012). Silica improves this protective layer by
improving its mechanical strength (Epstein, 1999
&2001; Sun et al., 2010). Mainly Silicon acts as
physical barrier that inhibits the penetration of the
pathogen in host plant and make it less vulnerable to
degradation done by enzymes that are secreted by
pathogen annexation (Innaga et al.,1995; Fauteux et al.,
2005; Datnoff et al., 2007; Van et al., 2013). Silicon
gets sedimented under the cuticle layer form a cuticle-
silicon double layer which prevents plant from
pathogen penetration and hence automatically reduces
the disease incidence (Ma and Yamaji, 2006 & 2008).

Silicon gets interconnected with hemicellulose
present in cell membrane and this linkage highly
improves the mechanical possessions and regeneration
(He et al., 2015; Guerriro et al., 2016). Various studies
also found some proofs regarding a noticeable increase
in cell wall turgidity due to silicon (Marschner, 2012).
In context to previous statement it was found that in
earliest cell walls if silicon applied, it interacts with cell
wall components like pectins or polyphenols, this leads
to increase in turgidity of cell wall in growing period
(Emadian and Newton, 1989). Supplement of silicon
delays the invasion of pathogen into epidermal cells and
hence less colonization of pathogen will be there. Some
popular examples to physical resistance are-
a. In case of rice infected with Pyricularia oryzae,
Silicon prevents the hyphal entry and for other several
leaf cells where silicon could not reach, a noticeable
amount of invasion was there (Sousa et al., 2013).

No. of appressorial sites was also reduced where silicon
was supplied (Hayasaka et al., 2008).
b. For rice infected with Pyricularia grisea and
Rhizoctonia solani, less no. of leaf blade lesions was
found when silicon was applied. (Rodrigues et al.,
2001; Seebold et al., 2004).
Formation of papillae: Under physical resistance one
more important aspect is formation of papillae. This
process is enhanced by Silicon during pathogen
interaction. Accumulation of silicon occurs in
haustorial neck of fungus and also in the papillae. This
accumulation helps in preventing the invasion of the
pathogen (Zeyen et al., 1993; Samuels et al., 1994).
Certain reports showed that in case of barley, the
papillae formation will be there. Here, epidermal cells
with induce the production of this papillae when
Blumeria graminis f.sp. hordeicause the infectionduring
silicon application. Another example is of rose plant
where silicon application increases the papillae
formation in the cells of leaves that restricts
Podosphaera pannosa (Shetty et al., 2012). Similarly,
in case of rice and wheat papillae formation will restrict
rice blast (Cai et al., 2008) and powdery mildew
(Belanger et al., 2003) respectively.
In 2007, Heine et al., gave the reports declaring that the
potential of silicon to inhibit disease spread inthe root
area depends on the uptake of silicon done by root cell
protoplasts. The accumulation that occurs on later stage
may not be responsible for the physical barrier as noted
in Pythium aphanidermatum in tomato. Cucumber also
showed systemic resistance when supplied with silicon
(Liang et al., 2005). Physical resistance is much simpler
than biochemical and molecular resistance.
2. Biochemical resistance: Silicon induced
biochemical resistance is linked with certain features-
a. Increases the potential of defense enzymes e.g.
glucanose, peroxidase, phenylalanine ammonia-lyase
etc.
b. Induction of anti-microbial compounds production
e.g. phenolic, flavonoids, PR proteins and phytoalexins.
c. Regulates certain systemic signals e.g. Jasmonic acid,
ethylene, salicylic acid (Datnoff et al., 2007; Fortunato
et al., 2012; Van et al., 2013).
Defensive enzymes and anti-microbial compounds
Whenever plant pathogen interaction occurs Silicon has
been reported to stimulate Defense-related enzymes and
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also certain anti-microbial compounds (Fauteux et al.,
2005; Datnoff et al., 2007; Van et al., 2013). Silicon
mainly activates the important defense related enzymes
e.g. polyphenol oxidases, catalase, peroxidases,
chitinase, glucanase etc. Major enzymes such as
phenylalanine ammonia- lyase are responsible for
producing secondary anti- microbial compounds. These
compounds are really important for resistance towards
plant diseases (Waewthongrak et al., 2015).

After the application of silicon if amount of
phenylalanine ammonia-lyase increases, it will lead to
accumulation of derivatives of totally resolvable phenic
and lignine- thioglycolic acid in the banana leaves and
also in coffee plant. This accumulation will reduce the
disease prevalence (Silva et al., 2010; Fortunato et al.,
2012). Furthermore, the other component PPO
(polyphenol oxidase) is also an important enzyme for
phenolic substance oxidation. It is found free in
cytoplasm or sometimes bound with particular
organelle (Quarta et al., 2013). PPO is responsible for
lignin synthesis, increases the anti-bacterial potential of
host plants and hence correlated with plant disease
resistance (Piperno, 2006; Song et al., 2016). Another
important activity which is affected by silicon could be
peroxidase and chitinase activities which are the crucial
components for host-disease resistance (Brisson et al.,
1994).
Certain defensive enzymes are regulated by SI in
accordance to different plant pathogen network (Table

2). Here defense related enzymes are secreted when
silicon is applied. Examples are taken of beans,
cucumber, melon and pea. For diseases like
anthracnose, crown and root rot, pink rot and leaf spot.
For all these diseases pathogen interaction will be
different hence releasing different defense related
enzymes. Higher the activity of these enzymes higher
will be the accumulation of antimicrobial compounds
which will give a substantial response as induced
defense system (Fawe et al., 1998; Rodrigues et al.,
2004; Remus-Borel et al., 2005). Antimicrobial
compounds like phenols, phytoalexins, flavonoids etc.
helps the host plant to fight back the infection (Fauteux
et al., 2005; Van et al., 2013).
Systemic signals
Host plant develops numerous layers of constitutive and
inducible mechanism of defense that ultimately gets
regulation with the help of signal transduction pathway
(Grant et al., 2013). Salicylic acid, Jasmonic acid and
ethylene functions great for immunity networks (Clarke
et al., 2000; Devadas et al., 2002). The reactivity for
three of them are different as salicylic acid works
against biotrophs and hemi biotrophs whereas Jasmonic
acid and ethylene works against necrotrophs (Pieterse et
al., 2012). These signaling pathways and some
modulating plant hormone homeostasis together are
also regulated by silicon (Fauteux et al., 2006; Iwai et
al., 2006; De-Vleesschauwer et al., 2008; Ghareeb et
al., 2011; Reynolds et al., 2016).

Table 2: DR-Enzymes induced by silicon in disease infection.

Host Disease Pathogen Defense related enzymes Reference
Bean Anthracnose Colletotrichum

lindemuthianum
Superoxide dismutase, ascorbate
peroxidase, glutathione reductase

Polanco et al., 2014

Cucumber Crown and root rot Pythium spp. Chitinase, peroxidase, polyphenol
oxidases

Cherif et al., 1994

Melon Rot Trichothecium
roseum

Peroxidase Bi et al., 2006

Pea Leaf spot Mycosphaerella
pinodes

Chitinase, beta-1,3- glucanase Dann and Muir, 2002

In case of silicon supplied Arabidopsis plants that are
having powdery mildew infection (Erysiphe
cichoracearum), production of salicylic acid, jasmonic
acid and ethylene were seen in the leaves of plants that
leads to increased resistance (Fauteux et al., 2006). In
this similar case Silicon also increased the gene
expression that is encoded with enzymes that
participates in salicylic pathway. Phenotypes that were
resistant showed significant lower level for salicylic
acid as compared to the susceptible ones (Vivancos et
al., 2015).
Majorly three types of active mechanism of defense are
available in biochemical resistance that are induced by
Silicon. First mechanism includes initial response by
cells when infection starts, second mechanism includes
the secondary response initiated by elicitors and it
remains restricted to the area of initial infection and
third mechanism includes the tertiary systemically
acquired response which gets transferred throughout the
infected plant (Hutcheson, 1998).

3. Molecular mechanism
Silicon plays an important role in the metabolic
activities of Phyto-pathological interaction. It leads to
activation of defense genes in host plants by initiating
functional and biochemical reactions. Signal
transduction also occurs here which induces resistance
and defense mechanism in plants (Vivancos et al.,
2015). Some transcriptomic experiments have been
performed to illustrate the role of silicon in inducing
defense responses in different plant systems (Chain et
al., 2009; Majeed Zargar et al., 2010; Ghareeb et al.,
2011; Nwugo and Huerta et al., 2011). In case of
tomato plant, Silicon induces resistance against
Ralstonia solanacearum by regulating the gene
expressions with regard to stress and defensive
responses, e.g. DRR proteins, trehalose phosphatase,
WRKYI transcription (Ghareeb et al., 2011).
Signaling pathways that are regulated by silicon have
already been discussed in the portion of “Systemic
signals”.
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In cucumber, systemic acquired resistance is induced by
silicon by expressing gene encoded with a new strain of
proline rich protein when fungal infection occurred
(Kauss et al., 2003). In tomato also, CHI-II, GLU,
PGIP and PODwhen expressed, were found restricting
R. solanacearum (Ghareeb et al., 2011).
4. Cellular mechanism:For explaining the cellular
mechanism, an illustration was done. Let’s review this
experiment further.
a. Plant material: Cotton seeds (Gossypium hirsutum)
of cultivar Sicot was obtained for this experiment. 5
plants were grown in pot of 10cm with requirements as
given- 16h light, 23-degree Celsius Day temperature,
8h night with 18-degree Celsius and light
fraction440πmol m–2 s–1 (Bunt,1998).
b. Treatments: Silicon source was potassium silicate
soil drench. Potassium silicate (1.5 mL L-1 water,
equivalent to 0.56 g SiO2. Make it a soil drench and
apply 150 mL per pot. Potassium silicate reduced the
disease incidence as well as promoted the plant growth
(Whan, 2010). With regular addition of liquid silicate, it
was found that silicon uptake was more in such plants
as compared to the plants that are not regularly supplied
with silicon.
c. Inoculation: 3 weeks seedlings were infected with
pathogen F. oxysporum f.sp. vasinfectum by root dip
method.

d. Transmission electron microscopy and light
microscopy
For this experiment, 50 samples were taken each being
representative of different treatments applied. Duration
were kept 2,3,7,14 and 28 days after inoculation. Small
cuttings of roots were taken and then 3%
glutaraldehyde with 0.1 M phosphate buffer was
applied. Pelco Biowave Microwave system was used
for the processing (Wendt et al., 2004). Uranyl acetate
was not applied in this process. Infiltration of samples
were done with 100% Epon resin on a rotating machine.
An ultramicrotome was used to do the sectioning
process. Section with a thick diameter were taken for
cellular analysis, they were chopped with the glass
knife in the initial stage and Toluidine blue was applied.
After that we can illustrate it under light microscope.
For a second instance think diameter sections were
taken and glass knife was used for chopping. These thin
cuttings then placed onto Formvar-coated copper grids.
After taking the pieces out of the grid, staining with
uranyl acetate and lead citrate was done (Samuels et al.,
1994). Then checked under transmission electron
microscope. As a result, micrographs of cotton plants
treated with silicon showed defense reaction against F.
oxysporum f.sp. vasinfectum.

Fig. 1. Silicon-mediated defense at different levels.

As the agriculture nowadays is showing a great incline
towards the chemical and synthetic products for a better
outcome and disease resistant plants, the environment is
suffering badly. Silicon here could be an alternative that
can be extracted from natural products and still can
resist diseases at a greater peak. Precipitated silica that
can be extracted from rice husk ash is a vital source that
is absolutely non-toxic to the environment. In areas like
Punjab where rice husk and straw are a great headache
to remove and degrade, it would be a great alternative
providing them the best for their fields.

CONCLUSION

The whole article revolves around the silicon providing
the defense mechanism to plants against stress
conditions that could be initiated by pathogens. For the

following verification different levels or aspects were
taken, be it physical, biochemical, molecular or cellular.
Experiments were discussed for more clarification.
Moreover, how silicon could be non-toxically utilized
in the fields, from which particular crop it could be
extracted and the other important data is also
summarized here. It was found that silicon can bless the
plant with a good defense mechanism. And can resist
fungal as well as bacterial diseases to an extent. By
combining available information on the interaction of
plant–microbes mediated by Si, the physical,
biochemical, and molecular mechanisms that can be
attributed to Si-mediated plant defense responses have
been summarized in this review.Although numerous
studies have elucidated the possible mechanism of Si-
mediated resistance at the physical, biochemical, and
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molecular levels, detailed mechanisms of Si regulated
plant–microbe interactions, such as plant signaling
transduction and transcriptome regulation of defense-
related pathways, are needed for further study.
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